
Strongly Connected Components

IOI Training Camp 2 – 2021/22

Kenna Geleta

CSES 1683 : Planets and Kingdoms

A game has n planets, connected by m teleporters. Two planets a and b belong
to the same kingdom exactly when there is a route both from a to b and from b
to a. Your task is to determine for each planet its kingdom.

Time limit: 1.00 s Memory limit: 512 MB

EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms

A game has n planets, connected by m teleporters. Two planets a and b belong
to the same kingdom exactly when there is a route both from a to b and from b
to a. Your task is to determine for each planet its kingdom.

Time limit: 1.00 s Memory limit: 512 MB

EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms

A game has n planets, connected by m teleporters. Two planets a and b belong to the same
kingdom exactly when there is a route both from a to b and from b to a. Your task is to
determine for each planet its kingdom.

Time limit: 1.00 s Memory limit: 512 MB

EXAMPLE PROBLEM

DEFINITION

A graph is strongly connected when a path exists from
every node to every other node.

A strongly connected component is a subset of nodes in
a graph where a path exists from every node to every
other node.

The strongly connected components form an acyclic
component graph.

EXAMPLE

1 2

3 4 5

6

7

Figure: Directed Graph

EXAMPLE

1 2

3 4 5

6

7

Figure: Directed Graph

EXAMPLE

1 2

3 4 5

6

7

Figure: Directed Graph

EXAMPLE

1 2

3 4 5

6

7

Figure: Directed Graph

KOSARAJU’S
DOUBLE DFS GAMBIT

KOSARAJU’S ALGORITHM (in pseudo)

1. Construct adjacency list
2. Perform DFS

1. Flag entry time
2. Push to children
3. Flag exit time
4. Add node timing object to list

3. Order list by descending exit time
4. Reverse all edges in the graph
5. Perform DFS from first list element

1. Push nodes to component lists

EXAMPLE: 1. construct adjacency list

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

1 2

3 4 5

6

7

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, }

{3, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, }

{3, }{4, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, }

{3, }{4, 5}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, }

{3, 6}{4, 5}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, } {2, 7}

{3, 6}{4, 5}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, }

{10, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, }

{10, }

{11, }

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, }

{10, }

{11, 12}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, }

{10, 13}

{11, 12}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, 14}

{10, 13}

{11, 12}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 2. perform dfs

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, 14}

{10, 13}

{11, 12}

NODE CHILDREN

1 {2,3}

2 {1,4}

3 {}

4 {3}

5 {4,7}

6 {5}

7 {2,6}

EXAMPLE: 3. order list by descending time

1 2

3 4 5

6

7

{1, 8} {2, 7}

{3, 6}{4, 5}

{9, 14}

{10, 13}

{11, 12}

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. REVERSE EDGES

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 5. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE: 4. 2nd DFS

1 2

3 4 5

6

7

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

EXAMPLE:

NODE FINISH TIME

7 14

6 13

5 12

1 8

2 7

4 6

3 5

DONE!

These components
are now available
for any other query

TIME AND SPACE COMPLEXITY

Time Complexity = O(n + m)

// due to the implementation of 2 depth-first searches

Space Complexity = O(n + m)

// accounts for the implementation of an adjacency list with n nodes and m edges

KOSARAJU’S ALGORITHM (in pseudo)

1. Construct adjacency list
2. Perform DFS

1. Flag entry time
2. Push to children
3. Flag exit time
4. Add node timing object to list

3. Order list by descending exit time
4. Reverse all edges in the graph
5. Perform DFS from first list element

1. Push nodes to component lists

WHY DOES THIS
WORK THOUGH?

DETAILED PROOF HERE:

https://cp-algorithms.com/graph/strongly-connected-components.html

CSES 1683 : Planets and Kingdoms

A game has n planets, connected by m teleporters. Two planets a and b belong to the same
kingdom exactly when there is a route both from a to b and from b to a. Your task is to
determine for each planet its kingdom.

Time limit: 1.00 s Memory limit: 512 MB

EXAMPLE PROBLEM

ANSWER: FIND THE SCC (Strongly
Connected Component) WHERE

EACH NODE IS FOUND

SCC IMPLEMENTATION

INITIALIZATIONS

vector<pair<int, int>> adj[maxn]; // pair<int a <- target node, int b <- edge type>

vector<int> vect; // store node id in order of finish times

bool vis[maxn] = {0}; // visited array for DFS

int comp[maxn] = {0}; // comp[i] = ID of SCC

int clvl = 1; // current SCC ID

SCC = Strongly Connected Component

SCC IMPLEMENTATION

for (int i = 0; i < m; i++)
{
int a, b; cin >> a >> b;
a--; b--; // ZERO INDEXING OR NO INDEXING!

adj[a].push_back(make_pair(b, 0)); // edges of type 0 are used in the first run
adj[b].push_back(make_pair(a, 1)); // edges of type 1 are used in the second run

}

// run the first dfs

for (int i = 0; i < n; i++) if (!vis[i]) dfs(i, 0, -1);

reverse(vect.begin(), vect.end()); // reverse edges to find ordering by descending finish time

// run second dfs based on vect ordering

for (int i = 0; i < vect.size(); i++)
{
if (!vis[vect[i].first])
{
dfs(vect[i].first, 1, clvl); // notice the second parameter!

clvl++;
}

}

SCC IMPLEMENTATION

void dfs(int a, int type, int cid)
{
if (vis[a]) return;

vis[a] = true;
if (type == 1) comp[a] = cid; // set component id only in second run

for (pair<int, int> child : adj[a])
{
if (child.second != type) continue;
dfs(child.first, type, cid);

}

// append processed nodes to list

vect.push_back(a);
}

1. Finding Strongly Connected Components (as shown in the example problem)

2. Condensed Graphs formed with SCC’s are always acyclic. (We can use this fact to..)

• Generate the topological ordering to apply Dynamic Programming techniques that tell us

• how many different paths there are

• what the shortest/longest path is

• what the minimum/maximum number of edges in a path is

• which nodes certainly appear in any path

APPLICATIONS

MORE SCC PROBLEMS

•SPOJ - True Friends

•SPOJ - Capital City

•Codeforces - Scheme

•SPOJ - Ada and Panels

•CSES - Flight Routes Check

•CSES -Coin Collector

•Codeforces - Checkposts

PROOFREAD BY ABDUL GANI

http://www.spoj.com/problems/TFRIENDS/
http://www.spoj.com/problems/CAPCITY/
http://codeforces.com/contest/22/problem/E
http://www.spoj.com/problems/ADAPANEL/
https://cses.fi/problemset/task/1682
https://cses.fi/problemset/task/1686
https://codeforces.com/problemset/problem/427/C

